C2-C3	$1.50(2)$	C7-C8	$1.36(2)$
C3-C9	$1.50(2)$	C8-C9	$1.37(2)$
C3-C11	$1.53(2)$	C12-C13	$1.53(2)$
C3-C10	$1.56(2)$	C12-C15	$1.55(3)$
C4-C5	$1.41(2)$	C12-C14	$1.56(3)$
C4-C9	$1.43(2)$		
C2-N1-O	$129(1)$	C6-C5-C4	$123(1)$
C2-N1-C8	$110(1)$	C5-C6-C7	$119(1)$
O-N1-C8	$122(1)$	C5-C6-C12	$121(1)$
N1-C2-C3	$114(1)$	C7-C6-C12	$120(1)$
C9-C3-C2	$98(1)$	C8-C7-C6	$117(1)$
C9-C3-C11	$111(1)$	C7-C8-C9	$126(1)$
C9-C3-C10	$113(1)$	C7-C8-N1	$127(1)$
C2-C3-C11	$111(1)$	C9-C8-N1	$107(1)$
C2-C3-C10	$113(1)$	C8-C9-C4	$118(1)$
C11-C3-C10	$110(1)$	C8-C9-C3	$111(1)$
C5-C4-C9	$117(1)$	C4-C9-C3	$131(1)$

The structure was solved by direct methods (SIMPEL; Schenk \& Hall, 1990) and refined by full-matrix least-squares calculations; anisotropic for non- H atoms and isotropic for H atoms. The H atoms were positioned geometrically and included as riding atoms in the structure-factor calculations. After isotropic refinement an empirical absorption correction (DIFABS; Walker \& Stuart, 1983) was applied. Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CELCON program comparable to Xtal LATCON (Hall \& Stewart, 1990). Data reduction: Xtal ADDREF, SORTRF. Program(s) used to solve structure: Xtal SIMPEL. Program(s) used to refine structure: Xtal CRYLSQ. Molecular graphics: PLUTO (Motherwell \& Clegg, 1978). Software used to prepare material for publication: Xtal BONDLA, CIFIO.

We thank Ing. J. Fraanje for collecting the X-ray data and Drs. K. Goubitz for his help with the calculations and the preparation of the drawings.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71334 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: SH1054]

References

Adams, D. B., Hooper, M., Swain, C. J., Raper, E. S. \& Stoddart, B. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 1005-1010.

Döpp, D. (1971a). Chem. Ber. 104, 1043-1057.
Döpp, D. (1971b). Tetrahedron Lett. pp. 2757-2760.
Döpp, D. \& Brugger, E. (1973). Chem. Ber. 106, 2166-2173.
Döpp, D. \& Brugger, E. (1979a). Liebigs Ann. Chem. pp. 554-563.
Döpp, D. \& Brugger, E. (1979b). Liebigs Ann. Chem. pp. 1965-1968.
Eichhorn, E. L. (1956). Acta Cryst. 12, 746-754.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
Schenk, H. \& Hall, S. R. (1990). SIMPEL. In Xtal3.0 Reference Manual, edited by S. R. Hall \& J. M. Stewart. Univs. of Western Australia, Australia, and Maryland, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zachariasen, W. H. (1967). Acta Crụst. 23, 558-564.
sits 0.506 (4) \AA out of plane from the other four atoms; the ring displacement asymmetry parameter $\Delta C_{s}(\mathrm{C} 3 \mathrm{a})$ is 0.8°. The title compound forms the ring skeleton in the crystal structures of a number of bromo substituted desmotroposantonin compounds: in 2-bromo-(-)- $\alpha-$ desmotroposantonin (White \& Sim, 1977a), 2,7-dibromo-$(-)-\beta$-desmotroposantonin (White \& Sim, 1977b) and 2-bromo-(-)- β-desmotroposantonin (McPhail, Rimmer, Robertson \& Sim, 1967) the B / C ring junction is always found to be cis.

Fig. 1. PLUTO (Motherwell \& Clegg, 1978) drawing showing the numbering system of the title compound. The H atoms are shown but not labelled.

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=188.23$
Monoclinic
$P 2_{1} / c$
$a=9.433$ (3) \AA
$b=12.674$ (3) \AA
$c=8.276$ (3) \AA
$\beta=101.99$ (3) ${ }^{\circ}$
$V=967.8(5) \AA^{3}$
$Z=4$
$D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 23 reflections
$\theta=20.0-21.5^{\circ}$
$\mu=0.081 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.43 \times 0.43 \times 0.25 \mathrm{~mm}$
Colourless
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: None
2963 measured reflections
2927 independent reflections
1514 observed reflections $[I>2.5 \sigma(I)]$

Refinement

Refinement on F
Extinction correction: Zachariasen (1967)
Final $R=0.049$
$w R=0.072$
$S=0.169$
1514 reflections
176 parameters
$w=1 /\left(2.01+F_{o}\right.$ $\left.+0.0091 F_{o}^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.092$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.183 \mathrm{e}^{-3}$

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Ol	0.7167 (2)	0.7584 (1)	0.9241 (2)	0.0578 (9)
C2	0.8589 (3)	0.7507 (3)	0.9235 (3)	0.062 (1)
C3	0.9113 (3)	0.6417 (3)	0.9729 (5)	0.075 (2)
C3a	0.7739 (3)	0.5759 (2)	0.9440 (3)	0.058 (1)
C4	0.7326 (3)	0.5316 (2)	0.7696 (4)	0.064 (2)
C5	0.5835 (3)	0.4818 (2)	0.7396 (4)	0.064 (1)
C5a	0.4711 (3)	0.5600 (2)	0.7699 (3)	0.049 (1)
C6	0.3262 (3)	0.5519 (2)	0.6870 (3)	0.064 (2)
C7	0.2251 (3)	0.6234 (3)	0.7122 (4)	0.070 (2)
C8	0.2629 (3)	0.7056 (2)	0.8223 (4)	0.066 (2)
C9	0.4045 (3)	0.7140 (2)	0.9082 (3)	0.052 (1)
C9a	0.5095 (2)	0.6429 (2)	0.8813 (3)	0.043 (1)
C9b	0.6627 (3)	0.6572 (2)	0.9750 (3)	0.049 (1)
O2	0.9250 (2)	0.8254 (2)	0.8859 (3)	0.087 (1)

Table 2. Geometric parameters ($\left(\AA,{ }^{\circ}\right.$)

$\mathrm{Ol}-\mathrm{C} 2$	1.345 (3)	C5-C5a	1.510 (4)
O1-C9b	1.474 (3)	C5a-C6	1.400 (4)
C2-C3	1.495 (5)	C5a-C9a	1.395 (3)
C2-02	1.209 (4)	C6-C7	1.364 (5)
C3-C3a	1.518 (4)	C7-C8	1.381 (4)
C3a-C4	1.523 (4)	C8-C9	1.380 (4)
C3a-C9b	1.530 (4)	C9-C9a	1.390 (3)
C4-C5	1.514 (4)	C9a-C9b	1.502 (3)
C2-O1-C9b	110.0 (2)	C6-C5a-C9a	118.2 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	109.8 (2)	C5a-C6-C7	121.3 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	120.8 (3)	C6-C7-C8	120.6 (3)
C3-C2-02	129.4 (3)	C7-C8-C9	119.2 (3)
C2-C3-C3a	104.0 (2)	C8-C9-C9a	120.9 (2)
C3-C3a-C4	113.2 (3)	C5a-C9a-C9	119.9 (2)
C3-C3a-C9b	101.3 (2)	C5a-C9a-C9b	121.4 (2)
C4-C3a--C9b	111.0 (2)	C9-C9a-C9b	118.7 (2)
C3a-C4-C5	110.8 (3)	O1-C9b-C3a	104.4 (2)
C4-C5-C5a	111.0 (2)	O1-C9b-C9a	108.1 (2)
C5-C5a-C6	121.2 (2)	C3a-C9b-C9a	116.9 (2)
C5-C5a-C9a	120.6 (2)		

The structure was solved by direct methods (SIMPEL; Schenk \& Hall, 1990) and refined by full-matrix least-squares calculations; anisotropic for non- H atoms and isotropic for H atoms. The H atoms were positioned geometrically and refined in the structure-factor calculations. Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CELCON comparable to Xtal LATCON (Hall \& Stewart, 1990). Data reduction: Xtal ADDREF, SORTRF. Program(s) used to solve structure: Xtal SIMPEL. Program(s) used to refine structure: Xtal CRYLSQ. Molecular graphics: PLUTO (Motherwell \& Clegg, 1978). Software used to prepare material for publication: Xtal BONDLA, CIFIO.

The authors thank D. Heijdenrijk for collecting the Xray data.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71304 (14 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1048]

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Ghosh, S. (1993). In preparation.
Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
McPhail, A. T., Rimmer, B., Robertson, J. M. \& Sim, G. A. (1967). J. Chem. Soc. B, pp. 101-106.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
Schenk, H. \& Hall, S. R. (1990). SIMPEL. In Xtal3.0 Reference Manual, edited by S. R. Hall \& J. M. Stewart. Univs. of Western Australia, Australia, and Maryland, USA.
White, D. N. J. \& Sim, G. A. (1977a). Cryst. Struct. Commun. 6, 681684.

White, D. N. J. \& Sim, G. A. (1977b). Cryst. Struct. Commun. 6, 685688.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1993). C49, 1975-1976

Structure of N, N^{\prime}-Dimethylpiperazine-2,3dithione: Space Group Correction

Dirk J. A. De Rmder \dagger
University of Amsterdam, Laboratory for Crystallography, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 18 March 1993; accepted 19 May 1993)

Abstract

The crystal structure of N, N^{\prime}-dimethylpiperazine-2,3dithione, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}$, has been described and refined in space group $A a$ [Servaas, Stufkens, Oskam, Vernooijs, Baerends, De Ridder \& Stam (1989). Inorg. Chem. 28,

[^0]4104-4113]. It is described properly in space group $A 2 / a$. Revised coordinates and bond lengths and angles are given.

Comment

The structure of the title compound was reported in space group $A a$ (Servaas et al., 1989). The six-membered ring of the molecule was found to adopt a half-chair conformation with the twofold axis running through the midpoints of the $\mathrm{C}-\mathrm{C}$ bonds, parallel to the b axis. Furthermore, the two $\mathrm{N}-\mathrm{C}$ (methyl) bond lengths were very dissimilar [1.439 (5) and 1.489 (5) A]]; there is no reason for them to be unequal. This unusual spread of distances undoubtedly resulted from the refinement of a centrosymmetric structure in a non-centrosymmetric space group (Ermer \& Dunitz, 1970; Schomaker \& Marsh, 1979). Therefore it seemed likely that the structure should properly be described in space group $A 2 / a$.

Starting coordinates were from Table 3 of Servaas et al. (1989) and averaged in accordance with $A 2 / a$. Fullmatrix minimization of the quantity $\Sigma w\left(F_{o}-F_{c}\right)^{2}$ with $w=1 /\left[\sigma^{2}(F)+0.0035 F^{2}\right]$ was performed. Refinement was anisotropic for the non- H atoms and isotropic for the H atoms. An isotropic extinction coefficient was included in the parameters [Zachariasen, final value $3.4(5) \times 10^{-5}$]. Anomalous dispersion was taken into account but no correction for absorption was applied. The H -atom positions were calculated initially on the basis of standard geometry and refined. A final difference Fourier map revealed residual electron density within the range $-0.22-0.30$ e \AA^{-3}.
The values obtained for parameters, bond lengths and angles are close to the averages of pairs of equivalent values obtained in the earlier $A a$ refinement. The two $\mathrm{N}-\mathrm{C}$ (methyl) bond lengths are now equal by symmetry at 1.473 (3) \AA. The general description of the structure remains unchanged.

Fig. 1. A PLUTO (Motherwell \& Clegg, 1978) drawing of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}$ showing the labelling of the independent non- H atoms. The view is down the twofold axis, with the crystallographic 2_{1} axis vertical.

[^0]: \dagger Present address: University of Bern, Laboratory for Chemical and Mineralogical Crystallography, Freiestrasse 3, CH-3012 Bern, Switzerland.

